Pulling Your Weight: Do Male Northern Pipefish (Syngnathus fuscus) Contribute More to Pregnancy than Females? Sidonie Horn, Ken Mey, Tony Wilson Department of Biology, Brooklyn College, Brooklyn, NY, United States Introduction Fertilized Egg

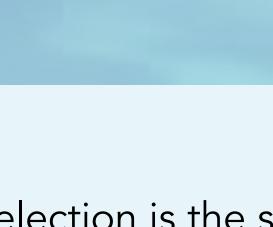
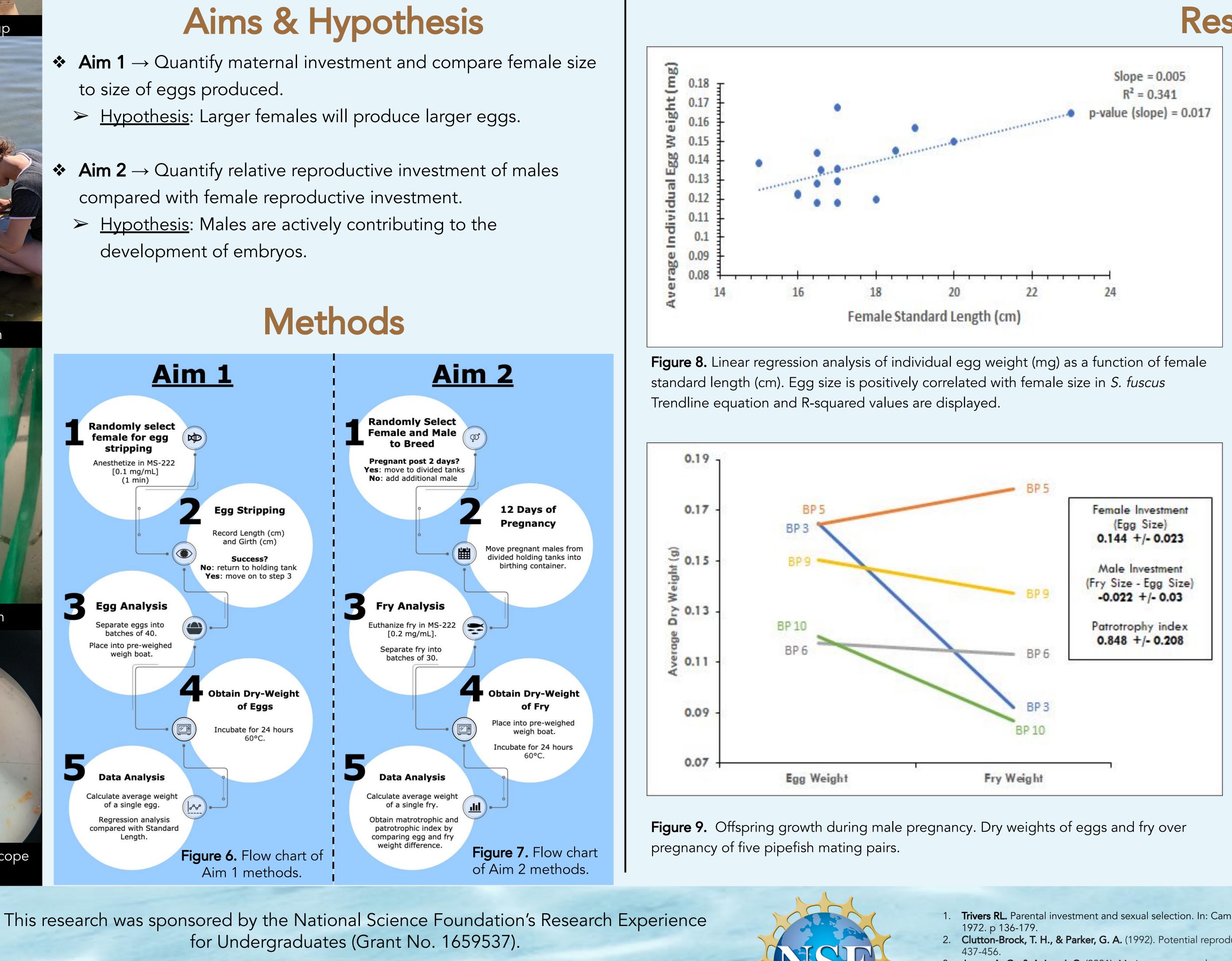
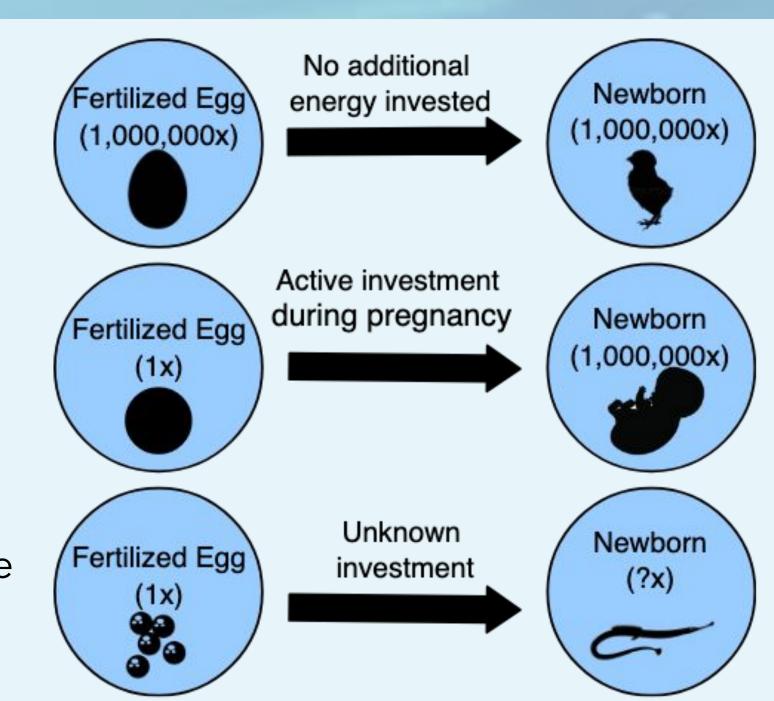


Figure 1. Initial tank set up

Figure 2. Field collection



Sexual selection is the selection of traits through competition for and the acquisition of mates¹. * Typically female investment exceeds that of male investment, with males exhibiting either forms of intra- and inter-sexual behaviors². • One common explanation for the direction of sexual selection stems from differences in parental investment². Seahorse and pipefish are rare examples in which males exhibit a form of pregnancy³. Previous research has shown that males provide nutrient provisioning to developing embryos in the brood pouch. The full extent of this provisioning is unclear⁴.


acquisition of males.

- to size of eggs produced.
- development of embryos.

Extended thanks to the BUEE program, the Wilson lab, and Rob Dickie for their support and advice.

* Research on a Virginia population of *S. fuscus* showed that this species produces nutrient-poor eggs in comparison to other pipefish species⁵. The Northern Pipefish (S. fuscus) (Fig. 3) was chosen as a model. Females exhibit strong banding patterns during courtship and compete for the

Breeding Pair	Male	Female	Genetic Parentage	Other Data
BP 1 & 1.1	M_01 & M_05	F_01	M_03 & M_05 / Wild Female	Pregnancy Duration
BP 2 & 2.1	M_02 & M_06	F_02	No fry	
BP 3*	M_07	F_03	M_07 / F_03	
BP 4	M_08	F_04	M_08 / Wild Female	15.91 +/- 4.85 days (n=11)
BP 5*	M_10	F_05	TBD	
BP 6*	M_13	F_06	TBD	Clutch Size
BP 7	M_12	F_07	No fry	
BP 8	M_09	F_1.1	No fry	
BP 9*	M_11	F_2.1	TBD	314.4 +/- 38.6 fry (n=5)
BP 10*	M_03	F_3.1	TBD	

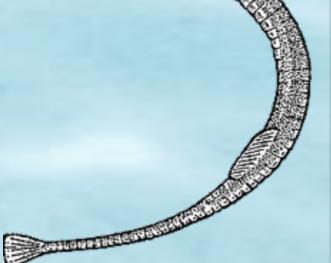
Table 1. Identification of males and females, clutch size, and pregnancy duration of breeding pairs used in Aim 2. * Represents breeding pair used in quantifying parental investment (Fig. 9).

- ➤ Future Work:
- (Fig. 9).
- ✤ Future Work:
- References
- Trivers RL. Parental investment and sexual selection. In: Campbell B, editor. Sexual selection and the descent of man 1871–1971. Chicago, IL: Aldine;
- Clutton-Brock, T. H., & Parker, G. A. (1992). Potential reproductive rates and the operation of sexual selection. The Quarterly Review of Biology, 67(4),
- Jones, A. G., & Avise, J. C. (2001). Mating systems and sexual selection in male-pregnant pipefishes and seahorses: Insights from microsatellite-based
- studies of maternity. Journal of Heredity, 92(2), 150-158. Kvarnemo, C., Mobley, K.B., Partridge, C., Jones, A.G., & Ahnesjo, I. (2011). Evidence of paternal nutrient provisioning to embryos in broad-nosed pipefish Syngnathus typhle. Journal of Fish Biology, 78, 1725.
- Ripley, J., & Foran, C. (2006). Differential parental nutrient allocation in two congeneric pipefish species (Syngnathidae: Syngnathus spp.). The Journal of Experimental Biology, 209(6), 1112-1121.

Figure 5. Diagrams represent varying degrees of energy investment in internal and external offspring development.

Conclusions

* Aim 1: Larger females produce larger eggs. Low R-squared value (R^2) = 0.341) indicates unaccounted variability in egg weight (Fig. 8).


 \rightarrow Extend study with an increased sample size.

 \rightarrow Add additional replicates for dry-weight egg analysis.

✤ Aim 2: Male energetic investment in S. fuscus is clearly less than that in females. While the patrotrophy index exceeds that found in lecithotrophic species, there is significant variation across broods

→ Extend study with increased sample size.

→ Nutrient analysis comparing energy contents (carbohydrates, lipids, proteins) of unfertilized eggs and newly released fry may help to illuminate specific aspects of the male contribution.

